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Numerical methods which are based on boundary integral formulations require the 
numerical evaluation of the Green’s function associated with the problem. In the case of 
periodic structures, the Green’s function is often an infinite series. This infinite series may con- 
verge slowly, making numerical evaluation expensive. Here, we present a practical computer 
implementation of a technique which dramatically speeds up the convergence of the infinite 
series Green’s function associated with the Helmholtz operator. To show the consequences of 
using this technique, we include some numerical examples. ( 1986 Academx Press. Inc 

1. INTRODUCTION 

In this article, we present a practical computer implementation for the numerical 
evaluation of the Green’s function associated with the Helmholtz operator on a 
periodic structure. In a somewhat simpler form, this Green’s function also appears 
in the calculation of Coulomb interaction energy for a lattice of ions, an application 
which motivated Ewald [ 1 ] to develop a very elegant procedure for its evaluation. 
Here, we show how to apply the basic formulas of Ewald’s method to the problem 
of evaluating the Green’s function for the Helmholtz equation on a periodic lattice. 
For this problem, we demonstrate the efficacy of Ewald’s method. We also indicate 
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how to choose optimal values for the parameters in our numerical implementation 
of Ewald’s method. 

Ewald studied techniques for speeding up convergence of series appearing in cer- 
tain lattice sums. He relied on the theory of periodic functions in a lattice, obtaining 
a Fourier series representation for the original series. The Fourier coefficients in this 
case can be explicitly evaluated. As Ewald published his method in 1921, he had not 
considered the practical implementation of his method on high speed computers. 
However, D. Meiron implemented Ewald’s method on a computer [2]. Meiron 
used Ewald’s method to speed up the convergence of the Green’s function 
associated with the Laplace operator. We, on the other hand, apply Ewald’s 
method to a more general problem, that of Maxwell’s equations with pseudo- 
periodic boundary conditions. 

In Section 2, we briefly motivate our need for Ewald’s method for efficient 
numerical evaluation of the series which represents the Green’s function in the 
boundary integral equation formulation of Maxwell’s equations. As we wish to 
solve Maxwell’s equations in a region composed of different media, we obtain 
through the boundary integral formulation a coupled system of integral equations. 
We present the relevant equations from Ewald’s paper in Section 3. Also there, we 
show how we choose the optimal point at which to split the infinite interval of 
integration. Section 4 contains the numerical results. We show that Ewald’s method 
produces a dramatic improvement in convergence, most notably in cases where the 
basic series converges slowly. Even in the most favorable case for convergence of 
the basic series, that of a dielectric constant with large negative real part and small 
imaginary part, Ewald’s method still required only approximately the same number 
of terms for comparable accuracy. Hence, in solving our coupled system of integral 
equations, we always apply Ewald’s method to evaluate the Green’s function and its 
derivatives. Section 5 summarizes the results and gives some general observations. 

2. THE GREEN’S FUNCTION 

To give some motivation, we briefly describe the problem for which we apply 
Ewald’s method. We are interested in the three-dimensional Maxwell’s equations 
defined on a doubly periodic domain with interfaces between media of differing 
dielectric constants. In the absence of charges or currents and in the case of time- 
harmonic electromagnetic wave, the electric field vector E defined in a medium in 
Maxwell’s equations satisfies the Helmholtz equation of the form 

dE+&E=O (2.1) 

subject to pseudo-periodic boundary conditions and interface conditions between 
adjacent media. Here E is the complex dielectric constant and k, is the free space 
wave number. We obtain a system of Helmholtz equations which are coupled 
through the interface conditions. 
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This coupled system of Helmholtz equations can be reformulated using the vector 
form of the Helmholtz-Kirchoff integral theorem (cf. Jackson [3]) in terms of a 
coupled system of boundary integral equations. Of course the boundary integral 
method assumes that one can obtain a suitable Green’s function for the problem. 
For our case, following the development in Morse and Feshbach [4], it is a 
straightforward task to derive the Green’s function with the following form: 

G(x, xl) =& f f exp[ -i(pm D, + vn DY)] exp(’ $ ‘OR,,). (2.2) 
n,= -x m= % m,, 

Here 

p = k,, sin 8 cos cp, 

v = k, sin 8 sin cp, 

and 

R,,=[(s-x’+mD,)*+(y-y’+nD,.)*+(z-z’)’]’#*. 

The angles 8, cp are the polar and azimuthal angles, respectively, of the incident 
plane wave; D, and D, are the periodic distances in the x and y directions, respec- 
tively; E and k, are as defined above. We note that equation (2.2) in essence is the 
superposition of fundamental solutions to the Helmholtz equation (2.1) modified by 
an appropriate phase factor which takes into account the pseudo-periodic boundary 
conditions. 

The accurate and efficient evaluation of the series given in Eq. (2.2) is of fun- 
damental importance for numerically solving the coupled system of boundary 
integral equations. In order to obtain an accurate and efficient evaluation of this 
Green’s function, we have derived and implemented on the computer an 
appropriately modified version of Ewald’s method. 

The significance of speeding up the convergence of Eq. (2.2) becomes apparent in 
the case when the dilectric constant for one media is 1. That is, the case of air being 
a medium. In particular, if we have normal incidence, 0 = 0, the phase factor is no 
longer present in the Green function and (2.2) reduces to 

(Jx, x,)=& f f eXP(;oRmn). 

m= x n=-3; mn 

(2.3) 

Equation (2.3) is exceedingly slow to converge (for arbitrary d, the number of terms 
having magnitude 10Pd is of order 10+2d ) making numerical evaluation by trun- 
cating the series difficult and computationally expensive. 
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3. EWALD'S METHOD 

For the purpose of this article, we restrict ourselves to the case of a periodic 
structure whose unit cell in the xy plane is a rectangle. It would be a 
straightforward task to generalize to a periodic structure whose unit cell in the xy 
plane is a parallelogram, a case of interest to us. However, such a generalization 
adds nothing to the presentation of Ewald’s method and merely complicates the 
mathematical expressions. 

We begin with Eq. (2.2) for the Green’s function. Following Ewald [ 11, we note 
that the second part of the term under the summation signs can be rewritten as 

ew(i & WL,) 
R mn 

= (2/h) IoK exp (- Rk,,s’ + 3) ds (3.1) 

for a suitably chosen path of integration. Here s is a complex variable. 
For validity of (3.1) the path of integration must be such that the integrand 

remains bounded as s + 0 and decays as s + cc. Thus as 

s+co, argb) E CPI2 - 3+, 812 - 7~141 

and as 

s + 0, arg(s) E [ -7c/4, 7r/4], where /I z arg(c). 

Actually, we shall want to restrict our attention to contours for which arg(s) lies in 
the intersection of these two regions as s + 0 or cc; i.e., as s + 0 or s -+ cc, 

arg(4 E 
c - n/4, PI2 - xl4 I, P E w, xl, 
[P/2 - 3~/4,7d41, BE [n, 2711. 

For any such contour (see Fig. 1 for an example), the change of variable s’= l/s 
leads to a contour of the same type in s’. This will be important later. 

The Green’s function as given by Eq. (2.2) can be written in two parts by using 
Eq. (3.1) and splitting the path of integration at E in Eq. (3.1). Thus we define 

G(x, x’) = G,(x, x’) + G,(x, x’), (3.2) 

G,(x, i)=& f f exp[-i(~mD,+vn0,)1(2/~) 
m=-CC n= --5 

X 
?I -R;,s2+$ ds 1 (3.3) 
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Re(s) 

FIG. 1. Path of integration. 

and 

G,(x, xl) =t 5 i exp[ -i(pm D, + vn 0,.)](2/&) 
m = rr ,I = rn, 

Ek; 
-R;,s’+~ ds, 1 (3.4) 

with v, p, and R,, as in Eq. (2.2). For the integral in Eq. (3.4), Ewald’s formulae 
apply directly. More precisely, following Ewald’s paper, one can write the integral 
as 

(2/J%) jr exp [ - Ri,s2 + $1 ds 

1 =- 
2Rm 

exp[i&k,R,,] 

+exp[-i&k,R,,] erfc (3.5) 

This identity is the key to our evaluation of the Green’s function. Applying (3.5) to 

(3.4), G2 becomes 

G2(x, x’)=& f f 
exp[ - i(wn D, + vn D,)] 

me-x n=-x R mn 

Xzexp[ki$k,R,,]erfc 
i&k, 

R,,E+---- . 
2E > rk 

(3.6) 
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The summation over f is a shorthand notation for the right-hand side of Eq. (3.5). 
We will use this notation throughout the remainder of the paper. Before refor- 
mulating G, so that we can apply Eq. (3.5), we need the following identity: 

f exp[-(ds)2(1+g)2-iddf] 
I= -m 

= (&/As) exp [ - d2/4s2] 

mx 

x C exp 
- (TcI/A)~ - (zl/A)d 

+ 2dg exp[i Adg]. 1 (3.7) 
,= ~. 1 s2 

This may be obtained from an identity of Ewald, (Eq. 13 in [ 11): 

f exp[-T(l+g)2+2(1+g)] 
I= -m 

= ,:;Fl;s exp[u’/r] f exp [ - ( 7c2/5)12 - 2nil( u/T - g)] 
/= x 

by making the following replacements: 

T by (AsJ2, 

U by -F, 

If we interchange summation and integration in the definition of G,, Eq. (3.3) 
becomes 

1 
G,(x, x’) = 2n3,2 - JOE { exp [$- (.z - z’)~s’] A($)1 ds, (3.8) 

where 

‘4(s)= f n= --cc exp [ -(D,s)2 (H+y)2-i,,D,] 

xmTaexp[ -(~.~~)‘(m+~)?-Judd,]. (3.9) 

Consider the inner sum in Eq. (3.9). By applying identity (3.7) to it, interchanging 
summations, and then apply (3.7) again to the new inner sum, Eq. (3.9) is reduced 
to 
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A(s) = 

x 2 f ev[ - (m??/D.J’ - (mn/D,)p - (nn/D,)’ - (7cn/D,)v 
2 1 

m(x-x’)+n(y-y’) 
DX )I D,. . 

Let us define rxrnn such that 

If further we define 

then Eq. (3.8) takes the form 

~“m=--m II--cc 

Making the change of variable s = l/s, we arrive at 

(& = exp cw + V?)l 
2&D ;- ’ !*;E x )‘m- 5 n=--J3 

x exp 
C 

Now, Eq. (3.14) is in the desired form to use (3.5) and we find 

X 
exp( f 25) erfc(cl,,/E+ WI 

CI mn 
exp[2ni(z+z)]. 

_1 

(3.10) 

(3.12a) 

(3.12b) 

(3.12~) 

(3.13) 

(3.14) 

(3.15) 

This equation and Eq. (3.6) are combined to give the numerical value of the 
Green’s function. The complimentary error function which appears in both series, 
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Eqs. (3.6) and (3.15), makes these series converge rapidly. This is a consequence of 
the fact that erfc(z) behaves asymptotically like 

exp( -z*)/(&z) as z -+ 00 for larg zI < 3x/4. 

In the next section, we will show through our numerical results that for several 
places of accuracy, the number of terms required is small. 

4. NUMERICAL RESULTS 

In this section, we describe some numerical results for the algorithm developed in 
the previous section. The particular dielectric constants we chose for the evaluation 
of the Green’s functions were motivated by the application for which the coupled 
system of integral equations was developed. For the most part, the dielectric con- 
stants used in this section are those associated with either air, amorphous silicon, or 
silver. 

We first compare evaluating the Green’s function using Eq. (2.2) versus Eqs. (3.6) 
and (3.15). Two different dielectric constants are used; aAg = ( -9.5, 0.309), dielectric 
constant for silver with wavelength 0.5~~ and &Air= (l,O). Figures 2A and 3A 
show the exponents of the terms in (2.2) for &Ag and sAlr for m and n in the range 
- 10 6 m < 10, - 10 <n 6 10. The evaluation point was taken as R = (0.1,0.2, 0.3) 
with D, = D, = 0.25. Note that for sAg, the number of terms in this range of m and 
n with magnitude exceeding 10 -lo was 22, while the corresponding figure for sAir 
was 441 (all the terms). Application of Ewald’s method to these two cases yielded 
the results depicted in Figures 2B and 3B. 

Note that in the case of aAg, both formulations give the same value of the Green’s 
function to all digits printed. Here Ewald’s method yields 26 terms of magnitude 
greater than lOPi’, as opposed to 22 for the basic series. This is the case most 
favorable for rapid convergence of the basic series: a dielectric constant with large 
negative real part and small imaginary part. It produces rapid exponential decay in 
(2.2). 

The case least favorable for the basic series is an E lying on the positive real axis, 
e.g., &Air, where the terms in (2.2) lose their exponential decay, as illustrated in 
Fig. 3A.. On the other hand, the rate of convergence of G, and G, are affected 
relatively little by the value of E, as indicated in Fig. 3B. In fact, for E lying in the 
general proximity of the positive real axis, using Ewald’s method rather than the 
basic series typically results in a speed up of an order of magnitude or more in 
evaluating G. Moreover, for no value of E is Ewald’s method appreciably less 
economical than summing the basic series. 

We now address the question of how to select E. We remark that E multiplies 
R,, in the complementary error function in Eq. (3.6) while the reciprocal of E mul- 
tiplies a,, in Eq. (3.15). 
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TABLE I 

Choice of Splitting Point E; ~~~ = (-9.5, 0.309), R = (0.1, 0.2, 0.3)” 

E 
Terms 
in G, 

Terms 
in Gz 

Tote1 terms in 
Ewald’s method Value of G from Ewald 

3 0 19 19 (0.23208[-4],0.3965[ -51) 
4 1 19 20 (0.23208[ -4],0.3965[ -51) 
5 5 17 23 (0.23208[-4],0.3965[ - 51) 
6 9 14 23 (0.23208[ -4],0.3965[ - 51) 
I 9 10 19 (0.23208[-4],0.3965[ -51) 
8 13 1 20 (0.23208[-4],0.3965[ - 51) 
9 13 6 19 (0.23208[-4],0.3965[-51) 

15 21 0 21 (0.23208[-4],0.3965[ -51) 

0 Terms included in sums if magnitude > 1 x 10~“. Terms in basic series: 19. Value of G from basic: 
(0.23208[ -4],0.3965[ -51). 

Thus increasing E has the effect of making the terms in G, decay faster while 
making those in Gz decay more slowly. From the standpoint of efftciency, the best 
choice of E is that which balances the rate of decay of the two series as 
([m] + [n]) -+ co, making G, and G, contribute an equal number of terms to the 
final value of G1 + GZ. Comparing the terms in the two series for large m and n and 
using 

as an 

the asymptotic expansion for erfc, we obtain 

E = nida 

approximation to the optimal value of E. 

t 

(4.1) 

@ In 
-50 -48 -46 -44 -42 -41 -39 -39 -38 -38 -38 -38 -38 -39 -40 -42 -43 -45 -47 -49 -52 
-47 -45 -43 -41 -39 -38 -36 -35 -35 -34 -34 -34 -35 -36 -37 -39 -41 -42 -45 -47 -49 
-45 -43 -40 -38 -36 -35 -33 -32 -31 -31 -31 -31 -32 -33 -34 -36 -38 -40 -42 -44 -47 
-43 -40 -38 -36 -33 -32 -30 -29 -28 -27 -27 -28 -29 -30 -31 -33 -35’-37 -40 -42 -45 
-41 -38 -35 -33 -31 -29 -27 -26 -25 -24 -24 -24 -25 -27 -28 -30 -33 -35 -38 -40 -43 
-39 -36 -33 -31 -28 -26 -24 -23 -21 -21 -21 -21 -22 -24 -26 -28 -30 -33 -35 -38 -41 
-37 -34 -31 -29 -26 -23 -21 -19 -18 -17 -17 -la -19 -21 -23 -25 -28 -31 -34 -37 -40 
-36 -33 -30 -27 -24 -21 -19 -17 -15 -14 -14 -15 -16 -18 -21 -23 -26 -29 -32 -35 -38 
-35 -32 -28 -25 -22 -19 -16 -14 -12 -11 -11 -12 -14 -16 -19 -22 -25 -28 -31 -34 -37 
-34 -31 -27 -24 -21 -18 -15 -12 -14 -17 -20 -23 -27 -30 -33 -37 
-34 -30 -27 -23 -20 -17 -14 -10 -13 -16 -19 -23 -26 -30 -33 -36 m 
-33 -30 -27 -23 -20 -17 -13 -10 -13 -16 -19 -23 -26 -29 -33 -36- 
-34 -30 -27 -24 -20 -17 -14 -11 -13 -16 -20 -23 -26 -30 -33 -36 
-34 -31 -28 -25 -21 -ia -15 -13 -15 -la -21 -24 -27 -30 -34 -37 
-35 -32 -29 -26 -23 -20 -17 -15 -13 -12 -12 -13 -15 -17 -19 -22 -25 -28 -31 -35 -38 
-36 -33 -30 -27 -25 -22 -20 -18 -16 -15 -15 -16 -17 -19 -22 -24 -27 -30 -33 -36 -39 
-38 -35 -32 -29 -27 -24 -22 -21 -19 -19 -19 -19 -20 -22 -24 -26 -29 -32 -34 -37 -40 
-40 -37 -34 -32 -29 -27 -25 -24 -23 -22 -22 -23 -23 -25 -27 -29 -31 -34 -36 -39 -42 
-42 -39 -36 -34 -32 -30 -28 -27 -26 -25 -25 -26 -27 -28 -30 -31 -34 -36 -38 -41 -44 
-44 -41 -39 -37 -35 -33 -31 -30 -29 -29 -29 -29 -30 -31 -32 -34 -36 -38 -41 -43 -46 
-46 -44 -41 -39 -37 -36 -34 -33 -33 -32 -32 -32 -33 -34 -35 -37 -39 -41 -43 -45 -48 

No. Terms. GT. l.E-10 Is 19 

FIG. 2. Terms in the basic series; sAg= (-9.546, 0.309), R=(O.l, 0.2, 0.3). (A) G=(0.22633[-41, 
0.38566[-5]), (B) G,=(0.11775[-43, 0.24874[-5]), G,=(O.10857[-41, 0.13692[-51). 
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The suitability of this cutoff has been verified computationally for a wide range of 
values of the parameters on which the Green’s function depends. Table I sum- 
marizes one such computational experiment. Here E = sAg, D, = D, =0.25 and 
R = (0.1,0.2,0.3). Equation (4.1) yields a value 7.1 for the optimal E, and it is clear 
from the table that this value is well prescribed. Table II describes a similar 
experiment with e=eAir. We note that formulas (3.6) and (3.15) remain valid for 
complex E. In general, however, moving E off the positive real axis increased the 
number of terms needed to attain a given accuracy. 

Terms in First Part of G 

@ tn 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -62 -58 -56 -58 -62 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -54 -47 -42 -41 -42 -47 -54 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -51 -41 -34 -30 -28 -30 -34 -41 -51 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -54 -41 -31 -24 -20 -18 -20 -24 -31 -41 -54 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -62 -47 -34 -24 -17 -12 -11 -12 -17 -24 -34 -47 -62 -99 -99 -99 -99 
-99 -99 -99 -99 -50 -42 -30 -20 -12 Ei - - - -12 -20 -30 -42 -50 -99 -99 -99 -99 
-99 -99 -99 -99 -56 -41 -28 -18 -11 6 -11 -18 -28 -41 -56 -99 -99 -99 -99 2 
-99 -99 -99 -99 -58 -42 -30 -20 -12 - - - -12 -20 -30 -42 -58 -99 -99 -99 -99 
-99 -99 -99 -99 -62 -47 -34 -24 -17 -12 -11 -12 -17 -24 -34 -47 -62 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -54 -41 -31 -24 -20 -18 -20 -24 -31 -41 -54 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -51 -41 -34 -30 -28 -30 -34 -41 -51 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -54 -47 -42 -41 -42 -47 -54 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -62 -58 -56 -58 -62 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 

No. Terms. GT. l.E-10 Is 9 

Terms in Second Part of G 

-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -60 -54 -51 -51 -53 -59 
-99 -99 -99 -99 -99 -99 -54 -46 -40 -37 -37 -39 -44 
-99 -99 -99 -99 -99 -53 -42 -34 -28 -25 -25 -20 -33 
-99 -99 -99 -99 -58 -45 -34 -25 -19 -16 -16 -19 -24 
-99 -99 -99 -99 -52 -38 -27 -19 -13 -10 -10 -12 -17 
-99 -99 -99 -99 -49 -35 -24 -15 - -6 -6 -8 -14 
-99 -99 -99 -99 -48 -34 -23 -14 WI;; 
-99 -99 -99 -99 -50 -36 -25 -16 -1 -7 -7 
-99 -99 -99 -99 -54 -41 -29 -21 -15 -12 -12 -14 -20 
-99 -99 -99 -99 -61 -40 -37 -28 -23 -20 -19 -22 -27 
-99 -99 -99 -99 -99 -58 -47 -38 -33 -30 -29 -32 -37 
-99 -99 -99 -99 -99 -99 -59 -51 -45 -42 -42 -45 -50 
-99 -99 -99 -99 -99 -99 -99 -99 -61 -58 -57 -60 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 

-99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 
-52 -63 -99 -99 -99 -99 -99 -99 
-41 -51 -99 -99 -99 -99 -99 -99 
-32 -42 -55 -99 -99 -99 -99 -99 
-25 -36 -49 -99 -99 -99 -99 -99 
-22 -32 -46 -61 -99 -99 -99 -99 
-21 -32 -45 -61 -99 -99 -99 -99 ” 
-23 -34 -47 -63 -99 -99 -99 -99 
-28 -38 -51 -99 -99 -99 -99 -99 
-35 -45 -59 -99 -99 -99 -99 -99 
-45 -55 -99 -99 -99 -99 -99 -99 
-57 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 

No. Terms. GT. lE-10 1s 10 

FIG. 2-Continued. 
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TABLE II 

Choice of Splitting point E: sAlr = (l., 0. ), R = (0.1, 0.2, 0.3)O 

E 
Terms 
in G1 

Terms 
in Gz 

Total terms in 
Ewald’s method Value of G from Ewald 

5 9 35 44 (-0.11325,0.79199) 
6 9 22 31 (-0.11325,0.79199) 
7 13 14 27 (-0.11325,0.79199) 
8 21 12 33 (-0.11325, 0.79199) 
9 21 7 28 (-0.11325, 0.79199) 

15 21 0 21 (-0.11325, 0.79199) 

a Terms included in sums if magnitude > 1 x 10-r’. Terms in basic series: 441. Value of G from basic: 
(-0.92732[ - 11, -0.78613). 

We include in Table III several values of the dielectric constants for silver (the 
first 5 dielectric constants) and for silicon (the last 5). In those cases where the basic 
series converged to 10 - lo within the 441 terms computed, the value of the Green’s 
function from the basic series and from Ewald’s method agree to several digits. In 
all cases in the table, E was 7. Here R = (0.15, 0.15, 0.15) which is a slightly more 
stringent case than in the previous tables as we are closer to the singularity. The 
number of terms with magnitude greater than lo-” is recorded. We see once again 
that with E = 7 the number of terms contributing to G, in Ewald’s method, i.e., con- 
tributing to G, and G2 is rougly equal. 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 

NO. 

-1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 
0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1% 
0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 
0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 

-1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Terms. GT. l.E-10 Is More 
Than The 441 Listed 

FIG. 3. Terms in the basic series; E ~,r=(l.o, 0.01, R=(O.l, 0.2, 0.3). (A) G=(-0.92732[-I], 
-0.78613), (B) G, = (0.11424, 0.79199) G2 = (0.99425[ -31,O.O). 
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5. SUMMARY AND CONCLUSIONS 

We have applied Ewald’s method to speed up the convergence of the series which 
is the Green’s function for the Helmholtz operator on a periodic structure. We have 
shown that pseudo-periodic boundary conditions poses no difficulty for Ewald’s 
methods. In addition, we have indicated that the unit cell of the periodic structure 
may be a parallelogram. Such a unit cell complicates the mathematical expressions 

Terms in First Part of G 

-Y9 -99 -99 -99 -99 -99 -99 -99 -99 -99 -49 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -58 -52 -49 -49 -51 -56 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -63 -52 -43 -38 -35 -34 -37 -42 -50 -60 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -51 -40 -32 -26 -23 -23 -25 -30 -30 -49 -62 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -56 -42 -31 -23 -17 -14 -14 -16 -21 -29 -40 -53 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -50 -36 -25 -17 -1 -8 -7 0 -15 -23 -34 -47 -63 -99 -99 -99 -99 
-99 -99 -99 -63 -46 -33 -21 -13 7 -4 -4 - 

r!l 

-12 -20 -30 -43 -59 -99 -99 -99 -99% 
-99 -99 -99 -62 -45 -32 -21 -12 -6 -3 -3 -5 -11 -19 -29 -43 -58 -99 -99 -99 -99 
-99 -99 -99 -99 -47 -34 -23 -14 -8 -5 -5 -7 -13 -21 -31 -44 -60 -99 -99 -99 -99 
-99 -99 -99 -99 -52 -38 -27 -19 -13 -10 -10 -12 -17 -25 -36 -49 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -59 -45 -34 -26 -20 -17 -17 -20 -25 -33 -43 -56 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -55 -44 -36 -30 -27 -27 -30 -35 -43 -53 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -57 -49 -43 -40 -40 -42 -47 -55 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -58 -55 -55 -58 -63 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 

No. Terms. GT. l.E-10 Is 14 

Terms in Second Part of G 

-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -60 -56 -54 -56 -60 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -61 -51 -44 -40 -39 -40 -44 -51 -61 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -61 -48 -39 -31 -27 -26 -27 -31 -39 -48 -61 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -51 -39 -29 -29 -39 -51 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -60 -44 -31 -21 -21 -31 -44 -60 -99 -99 -99 -99 
-99 -99 -99 -99 -56 -40 -27 -17 -17 -27 -40 -56 -99 -99 -99 -99 ,,, 
-99 -99 -99 -99 -54 -39 -26 -16 -16 -26 -39 -54 -99 -99 -99 -99 - 
-99 -99 -99 -99 -56 -40 -27 -17 -17 -27 -40 -56 -99 -99 -99 -99 
-99 -99 -99 -99 -60 -44 -31 -21 -21 -31 -44 -60 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -51 -39 -29 -21 -17 -16 -17 -21 -29 -39 -51 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -61 -48 -39 -31 -27 -26 -27 -31 -39 -40 -61 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -61 -51 -44 -40 -39 -40 -44 -51 -61 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -60 -56 -54 -56 -60 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 
-99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 

No. Terms. GT. l.E-10 Is 13 

FIG. 3-Continued. 



234 JORDAN, RICHTER, AND SHENG 

(7 - 

I 
-- 



EVALUATION OF GREEN’S FUNCTION 235 

which must be evaluated numerically but does not affect the theoretical results. In 
those cases where the dielectric constant is such that the basic series for the Green’s 
function converged rapidly, the series from Ewald’s methods also converged to the 
same value with similar number of terms. However, in those cases of slow con- 
vergence for the basic series, Ewald’s method converged in significantly fewer terms. 
Here the computational benefits are obvious, a mere 25 to 50 terms are computed 
compared with hundreds or even thousands of terms for the basic series. 

The impact of Ewald’s method is much greater when one considers the use we 
have in mind. We wish to solve a coupled system of integral equations. In the 
course of deriving an approximating system to be solved by the computer, we must 
compute the value of the Green’s function numerous times. Ewald’s method allows 
us to do this accurately and efficiently. We have also applied Ewald’s method to the 
derivatives of the Green’s function. 

Ewald’s method gives two series as a result of splitting an infinite interval of 
integration. The choice of where to split the interval of integration affects the num- 
ber of terms that contribute to the value of the Green’s function. We have provided 
a formula for the optimal value of this cutoff point and demonstrated its efficiency 
in computational experiments. 
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